This is an archival version of the original KnowledgePoint website.

Interactive features have been disabled and some pages and links have been removed.

Visit the new KnowledgePoint website at https://www.knowledgepoint.org.

 

Revision history [back]

click to hide/show revision 1
initial version
John Cody gravatar image
RedR

Before I bore you to tears with the nerdy stuff it is important that I make the following clear; All of the available epidemiological evidence for humanitarian contexts indicates that the risk of mortality from diseases associated with reduced water quantities present a greater humanitarian hazard than diseases associated with water quality. As pointed out in previous posts, the health risks associated with nitrogen in the water are chronic, while risks associated with bacteriological contamination and reduced water quantities are acute. Given the context described in your post in the short term I would chlorinate the water to provide a minimum free residual chlorine level of 0.2mg/L at the collection point to protect against bacteriological contamination and seek to provide the minimum quantity of 20 L per person per day specified in the Sphere standards, irrespective of the nitrogen levels. Concurrently I would seek to carry out a risk assessment to determine possible hazards associated with long term use. In particular I would want to identify the source of the nitrogen contamination, preferably through a combination of sanitary surveys and testing. Determining the source of nitrogen is critical in the long term. While chlorination is an effective protection against bacteriological pathogens (e.g. Vibrio Cholerae and Shigella) , it is less so against protozoa (e.g. giardia, cryptosporidum) and viral pathogens If the presence of the nitrogen is from contamination with sewage then there is a risk of exposing users to viral (e.g. Hepatitis E, Polio) and protozoan pathogens. If this is the case then further treatment would be required.

From a risk assessment perspective, There is a higher likelihood of the Methamaeoglobinaemia (Blue baby syndrome) hazard in populations with vitamin C deficiency. To fully assess the risk you would need to consult local medical authorities to quantify risk factors associated with micro nutrient deficiencies, viral and protozoan pathogens. If there is an absence of disea

click to hide/show revision 2
No.2 Revision
Claire Grayson gravatar image
WaterAid

Before I bore you to tears with the nerdy stuff it is important that I make the following clear; All of the available epidemiological evidence for humanitarian contexts indicates that the risk of mortality from diseases associated with reduced water quantities present a greater humanitarian hazard than diseases associated with water quality. As pointed out in previous posts, the health risks associated with nitrogen in the water are chronic, while risks associated with bacteriological contamination and reduced water quantities are acute. Given the context described in your post in the short term I would chlorinate the water to provide a minimum free residual chlorine level of 0.2mg/L at the collection point to protect against bacteriological contamination and seek to provide the minimum quantity of 20 L per person per day specified in the Sphere standards, irrespective of the nitrogen levels. Concurrently I would seek to carry out a risk assessment to determine possible hazards associated with long term use. In particular I would want to identify the source of the nitrogen contamination, preferably through a combination of sanitary surveys and testing. Determining the source of nitrogen is critical in the long term. While chlorination is an effective protection against bacteriological pathogens (e.g. Vibrio Cholerae and Shigella) , it is less so against protozoa (e.g. giardia, cryptosporidum) and viral pathogens If the presence of the nitrogen is from contamination with sewage then there is a risk of exposing users to viral (e.g. Hepatitis E, Polio) and protozoan pathogens. If this is the case then further treatment would be required.

From a risk assessment perspective, There is a higher likelihood of the Methamaeoglobinaemia (Blue baby syndrome) hazard in populations with vitamin C deficiency. To fully assess the risk you would need to consult local medical authorities to quantify risk factors associated with micro nutrient deficiencies, viral and protozoan pathogens. If there is an absence of disea